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1. Introduction 
This report documents the work performed on the Adaptive Fault Resistant System 
(AFRS) contract (contract number F30602-92-C-0097), sponsored by the US Air 
Force's Rome Laboratory, Directorate of Command, Control and Communications, 
Computer Systems Technology Branch (C3AB) . The work documented in this report 
was performed during the period of July, 1992 until April, 1994. 

1.1 Program Rationale 
The objective of the AFRS program is to provide large complex distributed military sys- 
tems with greater degrees of survivability, availability, and graceful degradation than is 
currently available. 

Many systems currently meet high availability and reliability demands by using specific 
fault management strategies to detect and recover from potential problem areas. Most 
research on these systems has focused on the management of static threat and envir 
onmental conditions. Battle Management/Command, Control, and Communication 
(BM/C3) systems are designed to manage static threat and environmental conditions 
as well, even though they exist not in a static, but in a highly dynamic environment. The 
dynamics occur along several dimensions: external situation, fault and threat charac- 
teristics, fault and threat prediction, and resource limitations. Since continued effective- 
ness of BM/C3 systems is essential to our national security, survivability, non-catastro 
phic behavior, and the most effective use of limited resources are critical attributes that 
must be provided. 

A static approach to fault management is inappropriate for BM/C3 systems because 1) 
requirements specified in the system's objective function and demands on system as- 
sets may change in response to changes in the dynamic operating environment; and 2) 
designing for worst case situation in every dimension of conceivable threat is cost pro- 
hibitive. An adaptive approach to fault management enables a system to dynamically 
tailor its fault management mechanisms to changes within the environment that influ- 
ence its objective function, and to dynamically apply its limited assets appropriately. 

The Adaptive Fault Resistant System must contain the ability to change a system's fault 
management mechanisms and modify fault management parameters at run-time to re- 
spond to changes in the dynamic environment and resource availability while maintain- 
ing the system's overall performance, consistency, and functional requirements. The 
adaptive fault resistant system must operate in a manner that coordinates all system 
resources toward a common fault management goal. 



1.2 Report Organization 
This report is organized into seven sections: (1) Introduction, (2) Overview of the Adap- 
tive Fault Manager, (3) Theater Missile Defense Application, (4) Testbed Description, 
(5) Lessons Learned, and (6) Appendix. 

Section 1 - Introduction includes topics on program rationale, report and program orga- 
nization, team members, and significant events. 

Section 2 - Overview of the AFM gives the technical detail of how the AFM was de- 
signed and built. It includes a background of the technologies and the need for an AFM 
as well as the design of all system components. 

Section 3 - Theater Missile Defense Application contains the evaluation and selection 
criteria for the AFRS demonstration application. It also includes reasons why TMD was 
selected and a description of the demonstration. 

Section 4 - Testbed Description provides the design, setup, and hardware/software re- 
quirements of the testbed which supports AFRS. 

Section 5 - Lessons Learned covers issues which were discovered during the design 
and implementation of AFRS and includes technical observations by the engineers of 
AFRS as well as benefits and limitations of the AFRS technology. 

Section 6 - Appendix includes any supporting material which would help the reader in 
understanding the work that was performed on the AFRS. 

1.3 Program Organization 
The AFRS program was built upon research into adaptive fault tolerance techniques 
performed under the Adaptive Fault Tolerance contract. The products of AFT research 
included, adaptive fault tolerance concept definition, system architecture specification, 
adaptive behavior management, fault taxonomy development, fault tolerance tech- 
nique classification, investigation of potential adaptations, and the development of no- 
tional examples. 

AFRS incorporated the results of AFT research into the AFRS component models and 
their implementation, further extended and modified the results of AFT research 
through the definition and implementation of resource management, and specified an 
architectural framework for building general adaptive fault resistant systems. 



1.4 Team Members 
The AFRS program is sponsored by the US Air Force Rome Laboratory. The technical 
efforts of the MML AFRS team are directed by Jerry Dussault of the Computer Systems 
Technology Branch (C3AB) of Rome Laboratory's Directorate of Command, Control 
and Communications. Martin Marietta Laboratories ■ Moorestown is the AFRS prime 
contractor and program lead. 

Other team members include the University of Maryland, BBN Systems and Technolo- 
gies, and Len T. Armstrong, from BCI. The University of Maryland is developing MARU- 
Tl, a hard real-time, distributed, fault tolerant operating system. Many of MARUTI's 
concepts, such as "monitors" and "horizons," complement the research demands of 
the AFRS program. BBN Systems and Technologies, the developers of the Cronus sys- 
tem development environment, are providing Cronus support. Len T Armstrong has 
been placed under contract from BCI for general AFRS technology design and imple- 
mentation support. Mr. Armstrong was a principal participant in the design and imple- 
mentation of the AFT program concept and demonstration. 

1.5 Significant Events 
The Initial Program Review was held at Rome Laboratory on December 10,1992. MML 
■ Moorestown presented the baseline AFRS architecture and the design and imple- 
mentation issues identified in each of the major components. 

The AFRS concept was presented by Stephen Bate at the Rome Laboratory C3AB 
annual Technology Exchange meeting held January 1993, as a first step in accomplish- 
ing the AFRS technology transfer. 

An MML ECP white paper in August, 1992 and a subsequent technical/cost proposal 
was submitted in November, 1992. The award of this ECP allowed MMLto build a realis- 
tic demonstration of the AFRS technology. 

The AFRS design and implementation effort was presented by Bob Gupta at the Rome 
Laboratory C3AB Technology Exchange meeting in October, 1993. A theoretical basis 
for AFRS and implementation experience was well received by the audience. 

MML's AFRS team met with SRI's team to exchange technology and discuss results 
and future directions of fault tolerance at SRI in Princeton, NJ during October, 1993. 



Rome Laboratory's Jerry Dussault and Pat Hurley met with MML's AFRS team in Moor- 
estown in November, 1993 to discuss the implementation effort and begin the user 
training process. 



2. Overview of the Adaptive Fault Manager 

2.1 Background 
AFRS technology is implemented in an application through the AFM. The AFM is a nat- 
ural extension of the Adaptive Behavior Manager developed in the AFT program. 

The AFM provides a fault management environment that meets a system's internal and 
external state demands across all system resources. To achieve this, the AFM dynami- 
cally alters the system's fault management mechanisms in response to changing sys- 
tem requirements. Since the fault management mechanisms place additional demands 
on system resources, integrated resource management is a critical component of 
adaptive fault management. 

To meet the fault management demands of the AFRS program, the AFM is a combina- 
tion of database, state observation, decision making, and resource control compo- 
nents. 

The AFM must continually observe and evaluate a system's internal and external 
states. The internal state contains information over which the system has direct influ- 
ence and control. Examples of internal state information include 1) hardware (process- 
ing load, virtual and physical memory usage, and communications loading/packet 
transfer rate), 2) application (application state and configuration), and 3) fault history 
(fault type and fault rate of recently experienced faults). 

The external state contains information over which a system has no direct control, but 
that directly influences the operation and requirements of the system. External state 
information includes mission and mode of operation. An example of the mode element 
of an external state in a typical BM/C3 system is High Threat Mode. The external state 
places dynamic requirements on the internal state. As the external state changes dur- 
ing the operation of a system, new requirements are placed on the internal state. 

At the highest level, system requirements are specified by an objective function consist- 
ing of performance, consistency, and functionality. For example, a BM/C3 application, 
in Low Threat Mode demands higher consistency and functionality, and lower perfor- 
mance. Conversely, High Threat Mode demands higher performance and lower consis- 
tency and functionality. This is because Low Threat Mode allows some deadlines to be 
missed (lower performance) so additional processing can be performed (higher func- 
tionality) for avoiding "false alarms" (higher consistency). High Threat Mode probability 
requires maximum attention to real-time deadline requirements (higher performance) 



and less attention to false alarm checks (lower functionality, lower consistency). Some 
fault management mechanisms are better suited to Low Threat Mode requirements 
(e.g., recovery blocks), while others are better suited to High Threat Mode require- 
ments (e.g., distributed recovery blocks). 

2.2 AFM Architecture 

This paragraph describes the Adaptive Fault Manager's system architecture. Figure 
2-1 shows the architecture of the AFM. 

Figure 2-1 AFRS System Architecture Diagram 



The internal state monitor is responsible for obtaining information about the system's 
internal state. The external state monitor is responsible for obtaining information about 
the system's external state. Although external state changes are outside the influence 
of the system, they are understood through application-defined methods. For exam- 
ple, user or sensor input may trigger (or verify) a change from Low Threat Mode to High 
Threat Mode. 

To obtain cost/benefit information of all potential adaptations, the AFM uses four data- 
bases to model a distributed system's objective function and resource usage charac- 
teristics: a Fault Management Techniques database, a Policy database, an 
Implementation database, and a Resource database. The Policy database relates the 
external state of the system to the corresponding objective function requirements. For 
every mode and mission pair of the system, the policy database has corresponding 
required levels of functionality, performance, and consistency. The fault management 
techniques database provides a relationship between a system's available fault man- 
agement mechanisms and their corresponding cost and benefits in the objective func- 
tion (i.e., requirements) and resource usage domains. Since many fault management 
techniques are "wrapped around" specific application tasks, cost/benefit information on 
the tasks themselves is needed to perform efficient tradeoffs. The cost/benefit of a fault 
tolerant task is a function of the costs/benefits of both a specific fault management tech- 
nique and specific implementation of the task that is used. The Implementation data- 
base provides cost/benefit information for the application tasks. Since each task may 
have multiple implementations in a given system (such as an implementation to run on 
a Connection Machine and an implementation to run on a Sun), there is not necessarily 
a one-to-one correspondence between tasks and their implementations. The re- 
source database maintains information of the resources and their characteristic (i.e., 
memory, cpu, disk, etc.). 

The Adaptive Resource Manager (ARM) is the remaining AFM component. The ARM 
determines when adaptations of fault management mechanisms are needed by evalu- 
ating internal and external state and performing objective function and resource man- 
agement cost/benefit tradeoffs. The ARM also schedules fault tolerant tasks in the 
distributed environment. 

The ARM accomplishes its complex goals through a heuristic cost/benefit evaluation of 
available task implementations and fault management mechanisms that can be used to 
achieve the system's objective function goals. Task implementations are paired with 



possible fault management techniques and assigned to nodes in "Course- of-Action" 
trees. Costs (resource usage, performance) and benefits (consistency maintained, 
fault coverage percentage) are evaluated for all possible pairs (nodes) in the tree. 
Nodes that do not meet objective function requirements are discarded. The remaining 
nodes are assigned a "worth" value. The highest valued nodes are then sent to a knowl- 
edge-based resource scheduler. 

The Adaptive Fault Manager (AFM) top-level data flow diagram is presented in Figure 
2-2. 

Application 
State Data 

Application 
State 

Application 
Tasks 

System 
Adaption 
Commands 

Figure 2-2 AFRS Data Flow 

The first step in AFM processing is the generation of an adaptation plan. The adaptation 
plan generation is triggered by a change in the system's external state or by the recep- 
tion of an alert condition generated by the detect anomalies component of the Internal 
State Monitor. 

The Internal State Monitor generates alert conditions when the system's perceived in- 
ternal state diverges from the desired internal state. The reception of an alert condition 
does not guarantee that an adaptation plan is produced by the ARM; it merely alerts the 
ARM that there may be a need for replanning the allocation of system resources, 



If a change in the external system state triggers the retrieval of a new objective function 
set, then the new objective function is converted and stored into the Desired Internal 
State database. 

If an adaptation plan is produced by the ARM, it is sent to the System Adaptation mod- 
ule. The arrival of an adaptation plan causes the Change Control module to construct 
and deliver adaptation commands to application tasks. 

The application tasks are instrumented to provide state data which is continuously gath- 
ered and stored into the Perceived Internal State database. In addition, a set of default 
system and node level hardware and software information is gathered and stored into 
the Perceived Internal State database. 

The ISM monitors the operation of the system against the desired system state. If the 
Perceived and Desired Internal State databases diverge past a threshold point, an alert 
to the ARM is generated and the cycle of adaptation and monitoring may begin again. 

2.3 Design Philosophy 
The design philosophy for the implementation of the AFM and for the representation of 
applications controlled and instrumented by the AFM can be described as a model- 
based, event-driven, feedback-controller system. 

The AFM components and the application tasks themselves are modeled as system 
objects which provide specific services that are accessed through well-defined public 
interfaces. The modeled objects are described as event-driven because they passively 
wait for invocation of their services through input events. Invocation of the object's ser- 
vice produces outputs which may trigger invocation of a service on another object. Each 
AFRS system component has been described in terms of triggers, inputs, outputs, tim- 
ing constraints and behavior. 

Existing applications are encapsulated within a shell which is capable of discreetly pro- 
viding information about the status of application specific and system generic data and 
processes. The monitored information is processed by the AFM, and may result in AFM 
directed adaptations in some or all of the system objects. These adaptations are in- 
voked on the objects through the same shell which enables and supports the gathering 
of monitored data. 



Monitored data may result in triggering a condition, such as an error rate threshold, that 
invokes an adaptation action. The AFRS does not only monitor state information, it also 
causes adjustments in task behavior. For this reason, the AFRS is viewed as a feed- 
back-controller system. This design philosophy was selected because it is applicable 
to a broad range of existing applications and allows applications which were 
constructed under other paradigms to be encapsulated to fit into the AFM architecture. 
Use of this approach therefore provides a greater assurance that the resulting AFM is 
broadly applicable to a wide range of potential applications and is constructed using a 
generic, reusable architecture. 

2.4 Design of AFM Components 

2.4.1        Internal State Monitor (ISM) 

The Internal State Monitor's (ISM) primary task is to build a picture of the system's state 
and to use this information to detect differences between the observed and expected 
states. Information gathering on a system wide level is difficult and must take into ac- 
count the ordering of information as well as communication delays. By leveraging work 
done on the internal IR&D project Distributed Resource Manager (DRM), and MMLM's 
experience with ISIS/Meta1, the ISM was built with efficient monitoring capabilities. 

There are 3 methods which provide the ISM with the information it needs. The first is 
that the ISM can query the System Databases for information it needs to initialize itself. 
The second method is through sensors and actuators that are provided by the DRM to 
monitor and modify applications. And, the third method is by sending and receiving 
messages to/from the ARM. This method is the means by which applications and fault 
tolerant techniques are assigned to resources and are modified. 

The Distributed Resource Manager (DRM), a state of the art tool for monitoring distrib- 
uted systems, informs the ISM of the health of tasks, and the observed resource utiliza- 
tion of an application. DRM was developed using IR&D funds over several years and 
has been successfully used in many different projects and contracts. It is based on the 
ISIS and Meta toolkits from Cornell University and allows one to monitor many things of 
interest in a distributed system, including user state variables in applications and the 

1.   More information on ISIS/META can be found in sections 2.5.1 and 2.5.2. 
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allocation of resources such as CPU, communication, and memory. It also monitors 
failures of components in the system (networks, processors, storage). By using this es- 
tablished tool the ISM was able to leverage a good deal of its functionality. 

Finally, the application itself may provide information to the ISM indicating its perceived 
ability to meet imposed requirements as well as other application specific attributes 
necessary to detect anomalies. The method by which the application informs the ISM is 
through META sensors which are incorporated into the application. The META sensors 
are available through the DRM as well as the AFRS Application Programmer's Interface 
thereby offering a consistent mechanism for communication. 

These sources of information are then combined for all the tasks in the system by the 
ISM to form a picture of the distributed system's state. This state is used to detect 
anomalies. 

When an anomaly has been detected it is the ISM's job to communicate the state of the 
world as well as the anomaly detected to the ARM which is responsible for correcting 
the situation. 

2.4.2        External State Monitor (ESM) 
MML used its experience in distributed system state monitoring gained in the DRM pro- 
gram to provide an efficient and easy-to-implement External State Monitor using the 
sensor concepts of the ISIS and Meta programming toolkits. The External State Monitor 
design is an extension of the Internal State Monitor design. It allows the sensed infor- 
mation to originate from programs outside of the AFRS system. This provides the capa- 
bility for external programs to interface with the External State Monitor to provide 
external state information. 

The AFM requires access to external state information to optimally match system re- 
sources and fault management technique selections to the requirements of the outside 
world. The External State Monitor must sense external information, such as mode of 
operation or mission state, and provide this information to the ARM. 

The External State Monitor passes information between components of the system 
through a sensor namespace. These sensors reside in one or more programs that will 
either simulate the system's external state or allow the demonstrator to manually 
change it. In general, changes in the external state occur either through a manual hu- 
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man interface or under the control of application-dependent automated reasoning 
tasks. This design enables the External State Monitor to be notified automatically when- 
ever any aspect of the external state changes so it can react to the new information. 

An additional bonus of this design is that Meta allows functions within the External State 
Monitor to be called whenever any of the externally sensed values changes. The Exter- 
nal State Monitor can be programmed to automatically provide information to the other 
parts of the AFM so they can react appropriately. 

2.4.3       Adaptive Resource Manager (ARM) 

The Adaptive Resource Manager (ARM) is responsible for responding to changes in 
the system state, evaluating the impact of the changes, and, if necessary, producing a 
system adaptation plan which mitigates the impact of the changes on the system. The 
ARM is activated by an alert from either the External or Internal State Monitors. 

Examples of adjustments which may be recommended include: (1) adjusting the fault 
management technique, (2) altering resources consumption by deleting unnecessary 
tasks, or (3) selecting either a new task or fault management technique implementa- 
tion. The Adaptive Resource Manager allows for adaptive modifications to the configu- 
ration of tasks and fault management techniques. The ARM retrieves information from 
the Policy, Fault Management Techniques, Implementation and Resource databases 
as well as from the Internal and External State Monitors to determine the current sys- 
tem requirements and the current state of system resources. 

The ARM produces task execution and resource usage schedules which are delivered 
to the Change Control Module in real-time. The resulting schedules satisfy and main- 
tain the performance, functionality and the consistency levels required as specified in 
the objective function set. Additionally, the ARM responds to ongoing fluctuations in the 
system's internal and external states and incorporates appropriate responses into the 
schedules. Internal state changes correspond to changes in the dynamic resource a- 
vailability and external state changes correspond to new objective function require- 
ments. 

12 



ISM Messages 

Figure 2-3 Adaptive Resource Manager Architecture 

The Data Flow in the Adaptive Resource Manager has been refined as illustrated in fig- 
ure 2-3. This new organization allows more flexibility in the design of the system. 
Through functional decomposition of the Adaptation task into 1) a Course of Action 
(COA) State Space Search module, 2) a Resource Allocation Rules and 3) a System 
Adaptation Planner rules, it is possible to develop the three functions independently. 
Well defined, consistent interface specifications describe inter-module communica- 
tion. Independent development of each module allows for the enhancement or exten- 
sion of any of the modules without affecting code already developed or requiring 
module re-design. For example, the Allocation Function could be extended to take into 
account reliability measures of system resources, or the COA State Space Search 
could be replaced with a more efficient search algorithm in the future. 

2.4.4       System Adaptation Manager (SAM) 

The System Adaption Manager's function in the AFRS is to receive the System Adapta- 
tion Plan from the ARM and actually make the system calls to implement that plan. It is 
the module responsible to make modifications to and start or stop processes. However, 
to accomplish this task, the SAM needs to know the same type and amount of informa- 
tion as the ISM. In other words, it needs to have all the same knowledge or state infor- 
mation and as much control as the ISM does in the system. For this reason, it was 
decided that the SAM would become incorporated into the ISM and become one of the 
functions of the ISM. Since the SAM still maintains a unique piece of functionality, the 
MML team feels that it warrants a high level description in the AFRS architecture. How- 
ever, the design and implementation details have been included in the ISM section and 
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the reader is encouraged to reference that section for more detail. 

2.4.5       Application Programmer's Interface (API) 

Out initial design looked into trying to provide a non intrusive programmer's interface to 
the AFRS system by mirroring the kernel interface. This would have eliminated the 
need for programmers to learn about AFRS, but it quickly became so complicated with 
special cases and insufficient information that it had to be abandoned. A more tradition- 
al client library that offers a convenient interface for programmers to send asynchro- 
nous messages, and to request remote procedure calls (RPC) was then developed. 

The Fault Management Application Programmers Interface (FMT API) had several de- 
sign criteria: easy to use, functional interface independent of FMT being applied, ex- 
pandable to new FMTs, and statefull verse stateless information. The state problem 
was addressed by shifting some requirements onto the user. By requiring the user to 
supply functions which encapsulate and interpret state information the user must de- 
cide which pieces of information need to be transferred between replicas because there 
is no way the system can. Guidelines and guarantees describing these requirements 
are provided. Common examples of statefull pieces of information the user must en- 
capsulate are the current simulation time and the local database of information con- 
tained in global variables. Examples of information which shouldn't be transferred 
between replicas are file descriptors and performance information collected about the 
instance. 

The heart of the FMT API evolved into 6 functions: AFRSjnit (declares task name and 
the callback routines necessary for state transfer), AFRS_connect (declares intent to 
communicate with another task), AFRS_msg_declare (declares receivable messages 
types and their associated callback function), AFRS_begin (called at end of initializa- 
tion), AFRS_send (sends an asynchronous message), AFRS_RPC (makes a remote 
procedure call to another task and returns its response), and AFRS_reply (sends re- 
sponse to an RPC call back to requestor). With only these 6 functions it is possible to 
produce a very powerful message passing system for use within the AFRS system. For 
a detailed description of these and other functions see the Software User's Manual Sec- 
tion 5.2. 

The key advantages of our API include removing the constant re-implementation of 
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fundamental fault tolerant techniques designed to handle failures and anomalies while 
providing a message/RPC based paradigm upon which to build distributed applica- 
tions. Currently 5 FMTs are supported: none, restart, primary/backup, N-modular-re- 
dundancy, and N-version. 

2.4.6       System Databases 
The function of the system databases is to provide a central repository of system data 
which can be accessed by all AFM modules requiring this information. The system da- 
tabases have been designed using the Cronus toolkit to provide the distributed capabili- 
ty needed for APRS. There are 4 distinct databases which are supported: (1) Policy, (2) 
Fault Management Techniques, (3) Implementation, and (4) Resource. 

2.4.6.1     Policy Database 
The Policy database lists tasks for each objective function by class name and priority. 
Each task represents a class of implementations which have corresponding perfor- 
mance, consistency, and fault management goals. The subset of tasks with the most 
critical priority represents the minimum acceptable configuration that must be available 
to accomplish the system's goals. 

The Policy database defines performance, consistency, and fault management goals 
separately for each task. Performance goals define timing requirements including 
whether deadlines are hard or soft, periodicity and response time. 

Figure 2-4 displays the layout of the policy database. 

The consistency goals describe the degree of internal (application embedded) fault tol- 
erance supported by the task and the degree of external (encapsulated around the ap- 
plication task) fault tolerance desired. Additionally, the consistency goals define 
acceptable error rates and types. The performance and consistency goals specified for 
each task in the Policy database are used in the Internal State Monitor's representation 
of the desired internal system state. Changes in the perceived internal state may then 
trigger alerts if the performance and consistency goals stated in the Policy database 
deviate across the defined thresholds. 

Fault coverage goals describe whether software and/or hardware fault coverage is re- 
quired, the number of simultaneous faults to be tolerated, and whether erroneous, 
omission, crash and/or deadline related faults should be covered. 
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Figure 2-4 Policy Database Structure 
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Note that the fault coverage goal stated in the Policy database is a starting point or rec- 
ommendation used in the selection among specific fault management techniques; 
additional information gathered at run-time may override the recommendation in the 
Policy database. For example, the Policy database may require fault tolerance only to 
hardware failures, excluding software related faults. Repeated erroneous results may 
require the transition to fault management techniques which guard against hardware 
and software faults. The Policy database is queried by the ARM when changes in the 
system's external state require the retrieval of a new objective function. 

2.4.6.2     Fault Management Techniques Database 
The Fault Management Techniques database provides a relationship between a sys- 
tem's available fault management mechanisms and their corresponding costs and 
benefits in both the objective function and resource usage domains. Each fault man- 
agement mechanism in the database has a set of costs related to its overhead and 
benefits specifying consistency supported and fault coverage provided. 

The ARM retrieves information from the Policy database including the expected fault 
mode for a given external state. This information is used in traversing a path through the 
Fault Management Techniques database to a set of fault management technique 
instances which are appropriate to the expected fault mode. For example, if multiple 
simultaneous software faults are expected in a given external state, the Fault Manage- 
ment Techniques database directs the ARM to a set of techniques which provide soft- 
ware fault coverage, such as recovery blocks or N-version programming. The fault 
mode model provides enough information to lead the ARM to a group of appropriate 
techniques, but it does not provide a mechanism to choose among the techniques or 

their implementations. 

Selection of a specific fault management technique requires additional information in- 
cluding performance constraints, resource usage overhead costs, and recovery time. 
The costs of each fault management technique instance must be weighed against the 
benefits defined for that technique. Therefore, each technique also has benefits de- 
fined for the technique's degree of fault coverage and consistency maintenance. 

The costs of each fault management technique instance must be weighed against the 
benefits defined for that technique. Therefore, each technique also has benefits de- 
fined for the technique's degree of fault coverage and consistency maintenance. The 
information needed to select a particular pairing of fault management technique 
instance with task implementation(s) is therefore derived from data provided in the Im- 
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plementation database, the Fault Management Techniques database, and on require- 
ments obtained from the Policy database. The representation of the fault coverage, 
consistency, performance data is similar to the representation of those objects in the 
Policy and Implementation databases. 

Additionally, fault management techniques are also grouped into classes within which 
possible adaptations are defined. Previous AFT studies showed that arbitrary adapta- 
tions between fault management techniques can not be efficiently performed. An un- 
derstanding of similarities between techniques is needed to form logical groupings or 
classes. Similarities used to form classes include input structure, output structure, and 
desired fault tolerant capability. 

An individual fault management technique may be a member of many classes. Each 
class contains a list of techniques that are members of that class. To generalize the fault 
management structure and provide a means of comparing a system with no fault man- 
agement properties or static fault management against the AFRS system, a Null fault 
management technique and a Null fault management class are defined. The Null tech- 
nique provides no additional overhead costs and no fault coverage or consistency 
maintained benefits. The Null technique allows fault management classes to contain 
techniques that allow the fault management to seamlessly degrade completely. The 
Null class is a special class that contains only the Null technique. The inclusion of the 
Null class allows all tasks within a system to specify a desired level of fault tolerance, 
even if that level is null. 

2.4.6.3     Implementation Database 
The Implementation database defines alternate implementations of application tasks 
and characterizes them in terms of resource costs and policy benefits. The ARM re- 
quires this database to determine the resource costs and policy benefits of application 
tasks. The Implementation database also provides the requisite information needed to 
execute and control application tasks. 

The Implementation database is relevant to both external and internal state changes. 
For instance, a change in system mode may require that a particular task, such as track- 
ing, be performed more frequently but less accurately. The database records whether 
there is an implementation that runs faster with less precision. 

On the other hand, the internal state monitor may observe an unacceptable increase in 
the error rate for a task, such as data transmission over a satellite to ground station link. 
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The Implementation database would be consulted for an alternate communications 
protocol implementation, along with measures of its reduced error rate at the expense 
of a reduction in throughput. 

Examples of different implementations of tasks in the same class include, multiple im- 
plementations tailored to specific processors or computational paradigms such as a 
shared memory multi-processor versus a uni-processor implementation, and task im- 
plementations with varying degrees of precision and different performance rates. 

While costs and benefits of fault management techniques are listed in the Fault Man- 
agement Techniques database, costs and benefits of each available implementation of 
each application task are located in the Implementation database. Many fault manage- 
ment techniques, such as N-modular redundancy, replicate tasks. Total processing, 
communications, and data storage costs, as well as performance and consistency 
benefits, are a function of the requirements of the task implementation and of the fault 
management technique. Together, the Implementation, Fault Management Tech- 
niques and Resource databases, provide all the information necessary to make re- 
source tradeoffs in choosing combinations of task implementations and fault 
management techniques that best satisfy objectives defined in the Policy database. 

Figure 2-5 shows the layout of the implementation database. The top level lists all task 
classes appearing in the policy database identified by task class name. Each task class 
name points to a list of alternate implementations. Associated with each implementa- 
tion are its processor, communications, and data storage needs and the levels of per- 
formance and consistency it achieves. 

Each task implementation instance is identified by a task name. Relevant information 
regarding task command line parameters is associated with each implementation. Also 
associated with each implementation are its processor, communications, and data stor- 
age needs, levels of performance and consistency it achieves, and a monitoring specifi- 
cation. 

The processor, communications and data storage requirements and constraints asso- 
ciated with the task implementation are specified in the resource specification object. 
This specification is modeled to match the specification of the Resource database. In 
addition to specifying the hardware resources required by the implementation, the task 
implementation's resource specification identifies operating system, support software, 
and special communications interfaces which constrain the assignment of task imple- 
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Figure 2-5 Diagram of the Implementation Database Structure 

mentations to physical resources. The ARM uses the constraint information to form a 
first-cut assignment of task implementations to system resources. 

Each task implementation is additionally described by an execution specification which 
lists pairs of executable code paths and the CPU architecture associated with the imple- 
mentation. The Implementation database provides methods by which the ARM can de- 
termine if a task may be executed on a member of the CPU class. For example, a task 
which has an associated "Intel 80386" CPU is upwardly compatible with an "Intel 
80486" CPU, but is not downwardly compatible with an "Intel 80286" CPU. 

Finally, each task implementation has an associated monitor specification. The Internal 
State Monitor gathers generic system hardware and software performance, utilization, 
and fault history information as well as application specific information. The monitor 
specification provides a mechanism for the application architect to embed Meta sen- 
sors and actuators into a shell encapsulating the application. The application architect 
may choose to additionally insert Meta sensors and actuators directly into the applica- 
tion. The monitor specifications require that the data type of the monitored information 
be specified as well as an identifying name. Meta sensors can operate by periodic poll- 
ing or on an event driven basis. The periodicity variable of the monitor specification al- 
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lows the application programmer to specify whether the sensor is periodic or event 
driven. Each Meta sensor is activated upon satisfaction of a guard condition. The guard 
condition and the action to be taken upon activation are specified respectively in the 
condition and action methods associated with the monitor specification object. 

The Implementation database was designed to contain information regarding the im- 
pact of the various implementations of the task on the resources. This definition had to 
be expanded to include different types of resources. For example, how a tracking algo- 
rithm executed on a SPARC 2 versus a SPARC 10. The calculation of the impact of 
algorithms across platforms is still an active research question in universities and re- 
source laboratories alike. 

2.4.6.4     Resource Database 
The Resource database provides the ARM with a model of the processing, communica- 
tion, and software resources of the system. The Resource database is a static informa- 
tion repository of the potential resources available; the Resource database must be 
compared against the Internal State Monitor's Perceived Internal State data store to 
gain a true picture of the potential versus actual resource availability. 

The resource database contains the following pieces of information for each resource: 
(1) CPU, (2) display, (3) storage, (4) communications, (5) software, and (6) operating 
system. Each of these classes is modeled with defining characteristics. For example, 
the CPU class is defined by an architecture, the potential number of millions of instruc- 
tions per-second the CPU can execute, whether a floating point co-processor is pres- 
ent, whether on processor cache is available, and the clock rate of the processor. This 
set of information is certainly not the only information which might describe a CPU, but it 
is sufficient for the purposes of proof of AFRS concept demonstrations. 

2.5 Enabling Technologies 
The Internal State Monitor leverages MML's Distributed Resource Manager (DRM) 
IR&D work, the Isis and Meta distributed processing toolkits, the Cronus object-ori- 
ented environment and the ART-IM reasoning tool. The following sections provide 
introductory information about these enabling technologies. 
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2.5.1        Isis 
Isis is a distributed processing toolkit that provides fault-tolerant communications ca- 
pabilities for cooperating processes across heterogeneous platforms. Isis has been in 
development since 1984 at Cornell University, under DARPA sponsorship. It has been 
used successfully in many research projects, and recently has ventured into the com- 
mercial arena. Isis develops the notion of process groups, virtual synchrony, and broad- 
cast capabilities in order to make it easier for the system builder to focus on the 
application, not the distributed communications substrate. The notion of process 
groups allow independent processes to belong to an Isis-maintained collection to 
which messages can be sent. By knowing the group identification, a process can send a 
message to the group, and Isis will multicast it to all members of the group. The notion of 
a process group is further enhanced by the virtual synchrony concept. Virtual synchro- 
ny is the guarantee that messages sent to a process group by different processes will 
be be seen by all group members in the same order. By providing this capability, the 
user need not concern himself with handling race conditions that can occur in a distrib- 
uted environment. Exploiting Isis's ability to do detection and notification of group mem- 
bership changes, it is possible to build replicated, highly fault tolerant applications. 

In the FMT API which communicates with itself and with the ISM component heavy ad- 
vantage of the atomic broadcast ordering provided by ISIS is used to guarantee that 
replicated tasks in the system see messages in the same order. This allows processing 
of messages in each instance of a task to proceed in the same order while not actually 
taking place at the same time in each instance which would be impossibly slow because 
of its distributed nature. Group membership change notification is one of two methods 
employed for failure detection within ISM. 

2.5.2       Meta 
Meta is a system built on top of Isis that allows application builders to monitor and con- 
trol distributed applications easily. It uses Isis' distributed communications capabilities 
to provide the user with sensors and actuators. Sensors are objects that monitor values 
in the application. These values can be user specific, such as variables, or system-re- 
lated, such as resource usage. When a value that is being sensed changes, Meta sends 
a message, via Isis, to the associated process group. Similarly, actuators trigger a func- 
tion call in a process when a particular monitored value is reached. This is also done via 
Isis messages. Together, sensors and actuators can be used for distributed control of a 
user application or as a monitor of an application's internal state. 
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The user specifies how sensors and actuators perform using Meta's description lan- 
guage, Lomita. Lomita allows the user to specify sensors and actuators for each pro- 
cess, and a list of rules that can be used to determine when to fire actuators. By using 
Lomita, the Internal State Monitor can alert the AFM when the number of faults within a 
particular process reaches a threshold. 

Currently the FMT API provides an interface for declaring monitorable pieces of infor- 
mation that hides the presence of META from programmers. Once declared in the code 
a description of the user monitorable data must be supplied in the Implementation Data- 
base. No visual method for monitoring user supplied data exists at this time. 

2.5.3        Distributed Resource Manager 
The Distributed Resource Manager (DRM) is an MML research program that exploits 
the benefits of Isis and Meta. It is an X-Windows-based monitoring tool that allows 
user-definable sensors and actuators to be specified and displayed in an easy-to-use 
graphical user interface. DRM uses the Jet Propulsion Laboratory's Widget Creation 
Library (WCL) to build control and monitoring widgets to be displayed on an X-Window 
screen. DRM combines the WCL with Meta to create a programmable user interface for 
a large distributed system. This technology was leveraged into the development of the 
Internal State Monitor by providing us with the ability to start and stop instances on re- 
mote hosts while also monitoring host level resource utilization. 

2.5.4        ART-IM 
ART-IM is a complete toolkit for the development of rule-based, or knowledge-based, 
systems. Available through Inference, Inc., it is the leading knowledge engineering tool 
in the nation. Version 2.5 was used on AFRS in developing the Allocation Function, 
Choose Next Pairing Function and the Planning Function in the Adaptive Resource 
Manager (ARM). ART-IM is used to execute the rules written for the functions listed 
above. For example in the Allocation function, rules were written to allocate tasks to 
resources, moving tasks from one resource to another and a method for degrading 
tasks. 
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2.5.5       Cronus 

Cronus is a distributed object-oriented execution toolkit developed by BBN Systems 
and Technologies. This toolkit was used to build the system databases used in AFRS. 
The object-oriented paradigm was used to build the databases which are hierarchical 
in nature. Building the databases in this manner let the team update the structure of the 
databases more easily as the system was implemented. 
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3. Theater Missile Defense Application 

3.1 Evaluation and Selection 
Technology demonstration is an important part of the AFRS program. This section doc- 
uments MML's effort to select a realistic BM/C3 application suitable for demonstrating 
the effectiveness of adaptive integrated fault management. The chosen application 
was picked from a set often candidates and was selected according to the criteria in the 
next section. 

Considerations affecting the selection of an application for demonstrating adaptive fault 
resistance were collected from a number of sources. MML's proposal listed an initial set 
of selection criteria derived from the study objectives defined in Rome Laboratory's 
RFR Both GE and subcontractor BCI added to this list during the beginning of the con- 
tract effort. Rome Laboratory's input was provided in the form of a Discussion Paper. 

The expanded list of criteria was organized into six general categories shown below. 

1. Relevance to Rome Lab's Survivable Distributed C2 Experiment 
2. Minimization of cost and risk 
3. Demonstration flexibility 
4. Benefit from distributed operating system research 
5. Benefit from adaptive fault tolerance research 
6. Benefit from dynamic resource management 

When a criterion pertained to multiple categories, it was assigned to a single one for 
convenience. The following subsections describe the considerations in each category. 

In addition to the categorization, the selection criteria were prioritized to simplify the 
evaluation process. A few criteria were deemed essential, and failure to satisfy one of 
them justified elimination of an application. About half of the remaining criteria were 
ranked as high priority. To receive a strong evaluation, an application had to rate well 
against most, but not necessarily all, of them. The remaining lower priority criteria 
helped to make a final application selection. All of the criteria and their priorities are pre- 
sented in the following subsections. 
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3.1.1        Relevance to Rome Lab's Survivable Distributed C2 Exper- 
iment 

MML's Adaptive Fault Resistant System contract is an integral part of Rome Laborato- 
ry's Survivable Distributed C2 Experiment. The experiment seeks "to build upon the de- 
velopment of distributed operating systems, research in adaptive fault tolerance, and 
concepts in dynamic resource management to implement a survivable distributed C2 
system for test and evaluation". Rome intends to expand the AFRS application through 
fiscal year 1995 to meet the experiment' s demonstration requirements. 

Selection criteria related to the three cited technologies are contained in three corre- 
sponding categories below. These categories collect some required characteristics of 
the application domain. The focus is on the actual application rather than on a specific 
demonstration software implementation. 

It was essential that the application is a distributed C3 System with real-time compo- 
nents. Although not mentioned in the description of the Survivable Experiment, network 
bandwidth was one of the resources to be managed dynamically for resilience to faults 
and graceful degradation. 

A high priority criterion was that the application be in the domain of battle management. 
Some RFP references indicated a BM/C3 system, while others stated only C2. MM sep- 
arated BM from C3 in evaluating several civilian applications that exhibit the important 
characteristics of military C3 but are not true battle management. 

The criticality of functional survivability and continuity of operation was a lower priority 
criterion. The more important survivability is, the more justifiable is the investment in 
new fault management technology. Finally, it was not required, but certainly preferred, 
that the application be related to an Air Force rather than exclusively to an Army or Navy 
function. 

3.1.2       Minimization of Cost and Risk 
MML seeks to minimize the cost and risk associated with the application demonstration 
in order to devote as much effort as possible to the development of AFRS technology. 
As a starting point, it was essential to have a robust existing simulation of the application 
domain including its primary functions. A second essential criterion was the approval 
from the cognizant organization to use the existing simulation both at MML and at Rome 
Laboratory. 
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There were a number of high priority considerations. MML should already have a thor- 
ough understanding of and experience with the application domain. The availability of 
technical support was important for modifying the simulation. Even with a fairly com- 
plete system implementation, extensions were likely to be needed to simulate faults 
and errors and for integration with the adaptive fault manager's internal state monitor. 
Installation of the demonstration in Rome Laboratory's Distributed System Evaluation 
(DISE) Environment required the consideration of the existing system's programming 
languages, hardware, and operating system. With regard to Cronus Distributed Oper- 
ating System support, the preferred languages were C, Ada, and C++. While not homo- 
geneous, most DISE nodes are Suns running Unix. 

Some lower priority cost and risk considerations were the complexity and quality of the 
existing application software and the suitability of its current HMI. Another factor was 
that running the simulation should not always require a large number of people and 
machines. 

3.1.3        Demonstration Flexibility 
This category combines a number of selection criteria intended to facilitate initial devel- 
opment at MML, future enhancements as part of the Survivable Experiment at Rome 
Laboratory, and open demonstrations at both sites. No considerations were prioritized 
as essential, but it was highly desirable that a realistic version of the application be im- 
plemented at the unclassified security level and that the source code be non-propri- 
etary. 

Some lower priority criteria were scalability and extensibility. The system should be 
scalable across different local configurations (such as numbers of processors and dis- 
plays) both for fault tolerance and for demonstration convenience. It was desirable that 
a survivable version be easily scalable across a WAN or multi-cluster. Finally, the ap- 
plication should be extensible to accommodate additional fault management technolo- 

gy- 

3.1.4       Benefit from Distributed Operating System Research 
Rome Laboratory's Survivable Experiment intends to build upon the development of 
distributed operating systems. A single high priority criterion in this category was that 
the existing application software already be distributed. In the first category, the re- 
quirement was imposed that the application be an inherently distributed system. The 
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consideration here is that the existing simulation not merely represent a distributed sys- 
tem but itself have a distributed implementation. 

Other criteria relate to benefit from the Cronus Distributed Operating System and the 
ISIS Toolkit. It was desirable that a more survivable or fault tolerant implementation of 
the application could be achieved by employing key infrastructure support provided by 
Cronus and by ISIS. These considerations were given a lower priority not because of 
their lack of importance but because many benefits of Cronus and ISIS will be realized 
directly in MML's adaptive fault manager design regardless of the application selection. 

3.1.5       Benefit from Adaptive Fault Tolerance Research 
This category contains characteristics that discriminate the potential of an application to 
take advantage of research in adaptive fault tolerance. There were a number of high 
priority selection criteria. For integration of fault management across the control dimen- 
sion, the application scenario should transition through different modes or missions 
with different functionality, performance, and consistency objectives. The application 
system should be subject to realistic faults and errors, and it was a head start if the 
existing simulation already generates some of them. There should be some quantita- 
tive measures of system effectiveness to help characterize the costs and benefits 
brought to the system by the adaptive fault manager. 

At a lower priority, it was desirable that the application fit the assumed fault model so 
that the granularity of faults and responses is of the order of a second and that the line 
replaceable modules are workstations. Beyond a collection of potential faults and er- 
rors, one or more catastrophic failure points that can be eliminated through fault man- 
agement techniques would help emphasize the depth of the technology benefit. If a 
fault tolerance approach is already incorporated in the existing simulation, that was ad- 
vantageous. Finally, it was helpful if the application had a diverse set of adaptivity alter- 
natives such as parameters controlling processing, alternate function implementations, 
and alternate assignments of processes to hosts. 

3.1.6       Benefit from Dynamic Resource Management 
Selection criteria in this final category indicate the application's need for and potential to 
benefit from integrating fault management across the resource dimension. The first 
high priority consideration was that the processing, communication, and/or data stor- 
age resources were sufficiently limited and stressed that there is a real resource man- 
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agement problem. The application should have at least five to eight distinct modules so 
that the problem is reasonably complex. Besides faults and errors, the dynamics of the 
scenario should involve changes in configuration such as a variable network topology 
or the loss of processing or storage assets. 

3.1.7       Rationale for Final Application Selection 
Out of the ten evaluated candidates, the Theater Missile Defense Command Center 
(TMD or TMD-CC) met all the highest priority selection criteria and was evaluated as an 
excellent candidate for the AFRS demonstration for the following reasons: 

a. TMD is already distributed and has many informative HMI screens on multiple 
workstations. 

b. The Batman scenario driver for TMD is an interactive part of the system and col- 
lects meaningful quantitative measures of effectiveness. 

c. The TMD demonstration already has three distinct modes of operation with dif- 
ferent objectives. Moreover, TMD-CC already has alternate algorithms in place 
for weapon to target assignment. 

d. Finally, TMD-CC's airborne defensive weapons make it more immediately rele- 
vant to Air Force operations. 

3.2 TMD Description 
The TMD Command Center (TMD-CC) provides BM/C3 support for a limited geo- 
graphic area. The commander in the TMD-CC needs to be able to assess the threaten- 
ing nature of countries in the theater and make command decisions during battle. 
During peacetime mode of operation, the commander's primary responsibility is to 
monitor and evaluate the military, political, economic, and social conditions of the coun- 
tries in the theater and determine whether any country is gearing up for hostile activities. 
During crisis mode, when hostile activities are detected, the commander makes deci- 
sions regarding deployment of ground, air and sea based defensive weapons. During 
war time mode, the commander's responsibilities are to decide on Course of Action 
(COA), Tactics, Weapon /Threat assignments and Weapons Release Authorization 
(WRA). During the entire time of TMD-CC operation, information and decisions need to 
be relayed to and from the national Consolidated Command Center (CCC) and infor- 
mation gathering devices such as radar, satellites and mobile units; however, the TMD- 
CC needs to continue functioning even if communication links are disabled. 
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3.2.1        Scenario Evolution 
The chosen TMD scenario is a theater in the Middle East with launches coming out of 
Iran towards Saudi Arabia. The demonstration runs at real-time and takes approxi- 
mately 30 minutes to complete. The scenario begins with the TMD Command Center at 
a peace state. During peacetime mode of operation, constant country assessments are 
being made as to the threat of each country in the theater. The data for Iran is then up- 
dated incrementally to show an increasing aggression and to demonstrate the capabili- 
ties of the Country Assessment Screen. The updating continues up to the present 
moment, and the decision aids indicate that the aggressive country is at a state of war. 
The Battle Manager (BATMAN) simulator then begins to simulate the launch of incom- 
ing threats. As these threats are detected by the decision aids, they are also displayed 
on the commander's screen in tabular and graphical format. The decision aids then 
make recommendations to the commander to aid in the analysis of the situation and in 
the decision making process. A map display overlays relevant information in the the- 
ater such as known weapon sites, aircraft, and missile tracks. The commander must 
make decisions as to the placement of weapon aircraft and mobile sites, authorize 
weapon release, and inform areas of potential risk (passive defense). The BATMAN 
simulator calculates the launching of defensive weapons and deposits this information 
into the database, from which it is retrieved for display. 

3.2.2       Existing Demonstration Content 

The TMD Command Center HMI is made up of five basic screens: (1) Cine Theater 
Commander Screen, (2) Event Indicator Screen, (3) Map Display Screen, (4) Threat 
Assessment Screen, and (5) Weapon-Target Assignment Screen. A printout of these 
screens is included in the Appendix of this document. Keep in mind that the screens are 
actually in color, so a true representation can not be made here. 

The Cine Theater Commander Screen displays assessments by the decision aids and 
performs all the command functions. The Event Indicator Screen shows the state of in- 
coming threats. The Map Display Screen overlays weapon locations and missile tracks 
with the map of the theater. The Threat Assessment Screen assesses each country's 
threat. The Weapon-Target Assignment Screen shows weapon to target matching. 

The modules which comprise the TMD-CC application include: (1) BATMAN, (2) Ne- 
trunner, (3) Adaptnet, and (4) Astrocalc. An SQL-like database is the central depository 
of all data and inter-process communication. BATMAN is the battle simulator which 
launches and propagates weapons and calculates hit or miss. It was developed by GE 
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in the 1980's as a space-based laser simulator. Over the course of several years, the 
model was modified to include kinetic energy weapons and ground-based intercep- 
tors. This is the module which drives the war mode of the scenario. 

Netrunner is the control program which processes most of the decision-aid neural nets. 
There are over 35 neural networks which evaluate over a hundred data points during 
the simulation. Netrunner continually monitors the simulated world and propagates in- 
put data to the correct neural net. Some of the neural net responsibilities include threat 
assessments, decision aids, and weapon-threat assignments. The networks were de- 
veloped by a tool developed by GE-CRD called GEN-R. This tool provides an Applica- 
tion Programmer's Interface to creating and running the neural networks. It also 
provides a textual front-end so that networks can be generated interactively and pro- 
vides for ease of experimentation. 

Adaptnet is the program which reconfigures and retrains the neural nets when condi- 
tions change. Traditional paradigms require re-training a neural net from scratch when 
a new decision, new input, or change in complexity arises. This can be cpu-intensive 
process and require time out of the bounds of a real-time system. Adaptnet solves this 
problem by using previously trained knowledge as a starting point and continues to train 
and grow the neural net as needed. 

Astrocalc predicts impact points and calculates launch points based on information 
available about tracks. This is a highly cpu-intensive module and its resource require- 
ments change as more threats are tracked. 

3.2.3       Existing Demonstration Architecture 
To achieve maximum performance, the applications and processes are distributed over 
the entire network of workstations. All communications between processes are per- 
formed through the database as shown in Figure 3-1. This data-driven architecture 
achieves process independence and requires no overhead of registering with a master 
control program. An application can be added, deleted, or changed with no impact to 
the rest of the command center. This provides for future upgradability as new technolo- 
gy is incorporated or as the source of the information changes (i.e., real-time radar in- 
formation could be fed in and all applications would have the new data). To reduce the 
possibilities of a database bottle-neck, the database is placed into a ramdisk so that it 
will operate at cpu-speeds. Each application in the command center is independent of 
the others and is capable of being shut down and restarted. The baseline TMD-CC 
does not employ any fault management or fault detection techniques. 
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BATMAN 
Simulator 

Figure 3-1 Theater Missile Defense Data Driver Architecture 

The scenario is driven by the BATMAN simulator. BATMAN calculates trajectories and 
interceptions based on probability of kill of individual weapons. It simulates sensor 
detection by placing the current location of all incoming threats and outgoing weapons 
into the database. All other applications read the database and process this informa- 
tion. Since BATMAN'S simulated sensors detect incoming threats at cloud break, Astro- 
calc is needed to calculate the launch points based on the current location and velocity. 
Astrocalc also predicts impact points and deposits them into the database. These pre- 
dictions, along with the current location of threats, are used by the weapon-target as- 
signment neural nets to calculate the best allocation of weapons. 
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3.2.4       Hardware and Software Requirements 
The hardware and software requirements for run-time operation are outlined in Figure 
3-2. All MML developed command center applications have source code included. The 
only COTS package which includes non-proprietary source code is the Transportable 
Application Environment (TAE). This is a tool to generate graphical interfaces in the 
X-Window environment using a point-and-click interface and is available from NASA. 

Item Specification 

Hardware Workstations 
Ram 
Virtual Memory 
Disk Space 
Network 

4 Sun Sparestation 1 +'s 
96 Mbytes (32+24+24+16) 
192 Mbytes (64+4848+32) 
200 Mbytes 
Ethernet Local Area Network 

COTS 
Software 

Operating System 
Libraries 
HMI System 
Decision Support Sys. 

SunOS 4.1.3 (UNIX) 
Motif 1.1, X11R4 (Openwindows) 
TAE 
GEN-R 

Figure 3-2 TMD-CC Hardware and Software Requirements 
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4. Testbed Description 

4.1 Hardware 

The AFRS testbed has been installed at the DISE facility at Rome Laboratory and has 
been named the Survivable Adaptive Fault-Tolerance Experiment Network (SAFTE- 
Net). The hardware was setup by Rome Lab system administrators per the require- 
ments by MML's AFRS team to run the AFRS system and the application. SafteNet 
consists of four Sun Workstations networked together by an ethernet Ian segment. The 
following table lists the hardware configuration of the net. 

Machine 
Name 

Machine 
Type 

Monitor Disk Memory 
(Ram) 

pizzal SparcStation 1 + 17" Color 525 Mbytes 32 Mbytes 

pizza2 SparcStation 1 + 17" Color 525 Mbytes 16 Mbytes 

pizza3 SparcStation 1 + 17" Color 525 Mbytes 16 Mbytes 

pizza4 SparcStation 1 + 17" Color 525 Mbytes 24 Mbytes 

4.2 Software 

The software base for the testbed is a combination of COTS packages that are readily 
available and all efforts have been made to use software that adheres to industry stan- 
dards and open systems. The following list includes the software required for the AFRS 
system and the TMD application to run correctly. All packages are available on each 
machine except for ART-IM which only required one run-time license. 

1. ART-IM, v2.5, rev. 2 
2. SunOS v4.1.3 
3. Openwindows v3 
4. X11R4 (included in Openwindows) 
5. Motif v1.1 
6. Isis/Metav3.0.8 
7. TAE 
8. Cronus v2.0 
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9. C compiler (included with SunOS 4.1.3) 
10. Fortran compiler (SC1.0) 
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5. Lessons Learned 

Lessons learned from each section of the program are discussed in the sections follow- 
ing. A general accomplishment of the entire system, however, is the ability of switching 
fault tolerant techniques. Before the AFRS system, systems that implemented fault tol- 
erant techniques fell back to restart methods when failures in the system occurred. The 
AFRS system however, allows the system to adapt between fault management tech- 
niques. This is not to say that every technique may be adapted to any other technique 
but options other than restart are available. For example, a voter may be adapted to a 
primary backup technique. 

5.1 Internal State Monitor (ISM) 

The most difficult problem discovered in the implementation of the ISM was the transfer 
of application state information to new instances of a task. The transition of state is an 
extremely difficult problem which requires the cooperation of the programmer since no 
automatic way could be found. Not only does the instance need to communicate with 
the ISM component the times when a state transfer may occur but it must also be capa- 
ble of transferring the information. ISM and the FMT API require an interface with the 
programmer through which this may be accomplished. 

The user must be made to understand what information is essential to transfer state. 
The user needs to record all data and system information that is needed to bring a new 
process up to date with what has occurred thus far in the process. The state must then 
be packaged up for transition. 

The state internal to the AFRS system was very difficult to encapsulate also partly be- 
cause of its size. If a voting FMT is in use each message which hasn't been voted upon 
from each instance must be sent. If primary/backup is being used messages which the 
backup hasn't seen the primary send but has been locally processed must be sent as 
well as messages which the primary has generated but the backup hasn't processed 
must be sent. This transfer of information is invisible to the user as it should be. The 
hardest problem here however was the numerous special cases or race conditions that 
exist in a hostile environment while attempting to switch FMT modes or start new 
instances of tasks. This was expected to be a hard problem and fulfilled every expecta- 
tion of difficulty. 
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The user must also establish points in the process in which the state may be transferred 
effectively. For example, a calculation must be finished or in a stable state, or the results 
may be lost during state transfer. 

The communication with the user of the above information lead to the development of 
the FMT API, also known as the client library. Initially, development of the idea of a truly 
transparent library was considered for the FMT API. Even with cooperation of the oper- 
ating system this was deemed impossible because several important pieces of informa- 
tion were unavailable to the system. Examples include the voter to use as well as which 
pieces of information need to be transferred or not transferred. See section 2.4.5 for 
more information. 

The FMT API offers the programmer a common interface for all fault management tech- 
niques and for the adaptation between them. This API offers all the services needed for 
implementation of the fault management techniques and a convenient, easy to use, 
message passing and remote procedure call interface. This interface is identical re- 
gardless of the FMT that is currently applied to the process. 

5.2 Adaptive Resource Manager 

The Adaptive Resource Manager (ARM) is a highly data driven, data intensive system. 
The basic requirements of this portion of the program require a highly organized, effi- 
cient and effective method for manipulating the data involved. The basic data types 
dealt with include: resource descriptions, implementation descriptions, fault manage- 
ment technique descriptions, descriptions of the current system state and desired sys- 
tem states. The ARM is required to place a task (a combination of an implementation 
with a fault management technique) onto resources. A task may be composed of many 
processes in the case of a multiple version or replication fault management technique. 
Each task, resource and individual process must be uniquely identified so that the ISM 
and the ARM may pass messages back and forth communicating the states of the re- 
sources, tasks, and changes that occur. This insures that the instructions given by the 
ARM are executed on the correct process. 

In this implementation of the ARM, the division of work was divided into three sections: 
State Space Searcher, Resource Allocation, and System Adaptation Planning. Each is 
an independently functioning portion.  However, over the course of the development, it 
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was found that the State Space Searcher and the Resource Allocation modules worked 
better in a more tightly coupled environment. In fact, to achieve a more optimized 
search, ideally the searcher and the allocator should be even more tightly coupled than 
they are in the current system. By coupling the two functions, it allowed for feedback 
regarding the system state and what implementation may have a "better" chance of 
achieving allocation. By introducing a limited amount of feedback, the process can be 
improved greatly by communicating to the searcher the resources that are currently un- 
der the greatest usage. This allows the searcher to choose those implementation/FMT 
pairings which least impact these resources. The effects of implementing the feedback 
between the searcher and the allocation process has been studied under the AFRS 
contract, however was not implemented. In future extensions of the system, the 
change will be added. 

A difficult problem, however, is the calculation of the impact of the various implementa- 
tions of the tasks on different resources. ARM needs to make accurate prediction of 
how implementation use a resource. This requires that an empirical study be made on 
each of the implementations that are going to be used in the application as well as a 
study of the fault management techniques. These values are then inserted into the im- 
plementation databases and the fault management techniques database (i.e. the 
amount of memory used by a processes or the amount of overhead added by a fault 
management technique). The ARM bases the models of the resources and the tasks 
on these number, thus if the values in the databases are wrong, then the recommenda- 
tions of the ARM will be in error. This may cause the ARM to recommend a course of 
action that can not be implemented. The University of Maryland studied the possibility 
of a formula that might be used to predict the effects of an implementation across plat- 
forms given statistics on another platform. However, this questions still requires a large 
amount of research before it could be implemented in a reliable manner. 

A related issue is the impact of the fault tolerant techniques on the execution of the vari- 
ous implementations. This requires a large empirical study of the impact of the various 
techniques on the implementations. Such studies would improve the allocation pro- 
cess. 

Another method for improving the ARM would be to define heuristics for the imple- 
mentation/fault management technique pairings. This is a very difficult problem in that 
the definition of heuristics require a formalization of the requirements of the imple- 
mentation and fault management techniques. Heuristics of this nature are most often 
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expressed in terms of a mathematical formula. As discussed above, the formalization 
of the impact of implementations and fault management techniques on resources 
needs much more research before it could be realized However, if such a formalization 
was available, it would allow us to "weed out" or change the method in which we select 
the faults management techniques and implementations that would make the ARM 
more efficient. 

A critical assumption made at the beginning of AFRS was that the application would be 
executed on a fully connected network and NFS mounted system. This allows the as- 
sumption that each task will be able to communicate without having to consider routing 
or if the nodes are connected. This allows the assumption that if a file is shared among 
implementations that it will be accessible to the implementations no matter which re- 
source/node the implementation will be executing on. Without this assumption, the 
complexity of the ARM more than doubles because of the calculations that would be 
required for analysis of the implementation requirements of network topology, connec- 
tivity. The information that would be required for this analysis would be: the network 
topology of the resources, an internal representation of the topology, the connectivity of 
the application in terms of processes, and connectivity requirements the FMT would 
have on the processes (for example in the cases of multiple version or replicated pro- 
cesses). The information would be needed during the allocation process so that the 
ARM could guarantee the connectivity required by the tasks. This type of analysis has 
been done on other programs, however, it is beyond the scope of the AFRS contract. 
The ARM could be expanded to include this type of analysis in the future. 

The System Adaptation Planner function is relatively straight forward with the exception 
of the case in which the system resources are near capacity. In this case, the planner 
may enter a situation in which there is no solution. This is particularly a problem when 
the processes require that the previous copy of the process must be maintained for 
state transfer or smooth transition of messages. In situations in which all processes 
must be transferred in this manner, a single process may need to be stopped in order for 
the planner to complete the transition. 

As stated previously, coordination is required between the ISM and the ARM. This is 
especially evident in the transition between objective functions. This transition must be 
orderly and coordinated. To execute the transition between objective functions, the 
ARM must analyze what is required of the new objective function, compare this to the 
old objective function and make modifications to the current state of the system as 
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needed to satisfy the new objective function. These changes may include changes in 
priority of tasks, switching fault management techniques, bringing new tasks up or stop- 
ping currently executing tasks. The ARM must communicate these changes to the ISM. 
This however, requires that the ARM and the ISM correlate the identifiers of the process 
currently running and what they will be identified as in the future. As the identification 
may have changed during the transition. It is particularly critical for the ARM component 
as the identifiers are critical in the system in that each task is uniquely identified. These 
identifiers are required for coordination in switching objective functions, changing fault 
management techniques or switching implementations. 

5.3 System Databases 

The main theme with the implementation of the databases was the requirement for en- 
capsulating changing requirements in a stable database. 

The Policy database needed to be defined in a manner which allowed the user to repre- 
sent requirements based upon a varying environment. The database had to allow the 
user to represent the desired actions for the different states of the world and the com- 
promises that could be undertaken given a degraded environment. The concepts of 
performance, consistency and fault management requirements were difficult to define. 
However, definitions assumed by the AFRS system were workable. For a detailed de- 
scription of the policy database, refer to section 6.4 of the Software Design Document 
(CDRL A006). 

The Fault Management Techniques database has to also record variable data in stable 
fields. In this case the impact of the various techniques on processes. This information 
was stabilized by using the maximum impact of the FMT on the processor, memory and 
communication on the process. 

A mapping of fault management requirements in the policy database to specific imple- 
mentations was studied, but was not implemented in this version of the FMT database. 

The system databases were designed to take information from a historical system. 
However, this was not implemented in the current AFRS system. 
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6. Appendix 

Cine Theater Screen 
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6.2 Event Indicator Screen 

0 Event Indicator 

m Row Id  Phase Type Origin Impact Point    impact Tine   launch lime   flight Time jra! 

[3 HOST RECENT MISSILE UWM: id 13      LflJNQO AT : 10:33,23    HEW : 1 to 10 out of 10 missiles.     Time = 10:39.58      \M 

6.3 Weapon-Target Assignment Screen 
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6.4 Threat Assessment Screen 
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6.5 Map Screen 
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MISSION 

OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


